

Quiénes somos | Sunti

Soper

- Subsidiaria del grupo SOPER (Société de Participations dans les Energies Renouvelables)
- SUNTI: dedicada al diseño, desarrollo y operación de centrales solares térmicas y fotovoltaicas para industrias.
- Misión: acompañar a los industriales en la transición energética hacia un desarrollo sustentable.
- Modelo: ESCO => Sunti asume la inversión del proyecto y vende la energía producida.

EXPERIENCIA EN INFRAESTRUCTURA ENERGÉTICA

500 MW en proyectos de energía renovable (SOPER) 30 años de experiencia

VISIBILIDAD A LARGO PLAZO

Solución integral

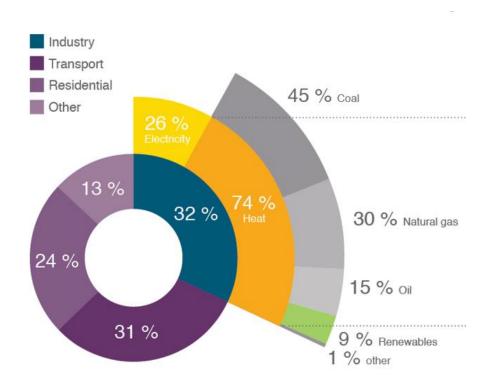
SOLVENCIA Y CAPACIDAD DE INVERSIÓN

Inversión con capital propio. Único accionista (SOPER) Balance: €274 millones

VISIÓN INTERNACIONAL

Proyectos en Francia y en el exterior

Transición energética y desarrollo sustentable

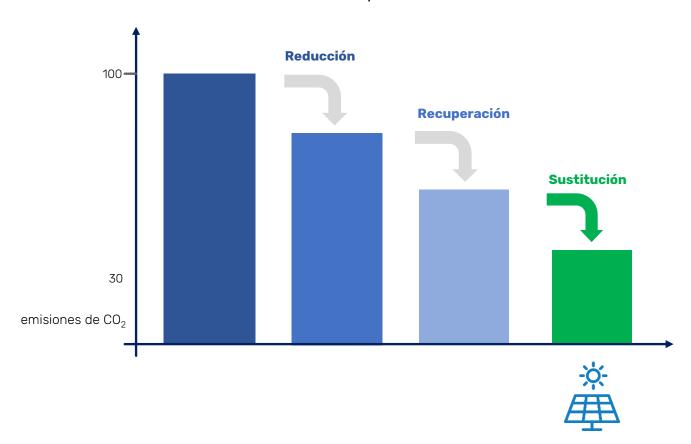


de la energía mundial es consumida por el sector industrial

de la energía que se consume a nivel global es utilizada en procesos de calor en la industria

de la energía que se consume a nivel global es utilizada en forma de electricidad en la industria

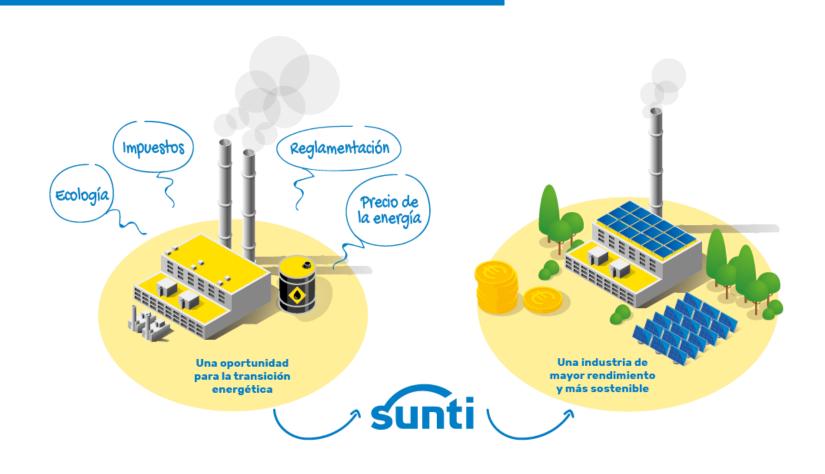
Resulta fundamental cambiar la matriz energética industrial hacia energías limpias y renovables.



Consumo energético mundial en 2014 - AIE (Solar Payback)

El sector industrial en acción

Reducción de emisiones de CO2 en plantas industriales:



Pocas herramientas disponibles para empresas que buscan sustituir su energía por fuentes limpias y renovables.

La **energía solar** tiene un rol fundamental en la transición energética industrial

Energía solar para la transición energética

Tecnología probada y eficiente

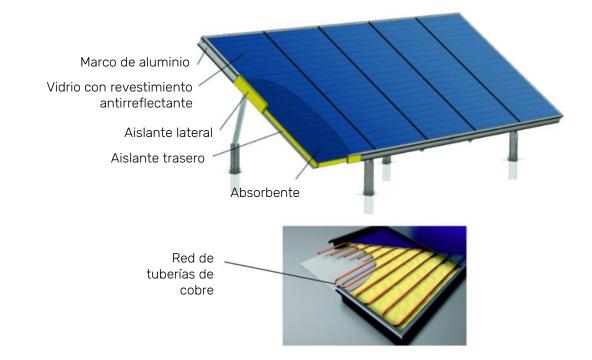
COLECTORES PLANOS

Instalación

En el suelo

Temperatura

hasta 90°C

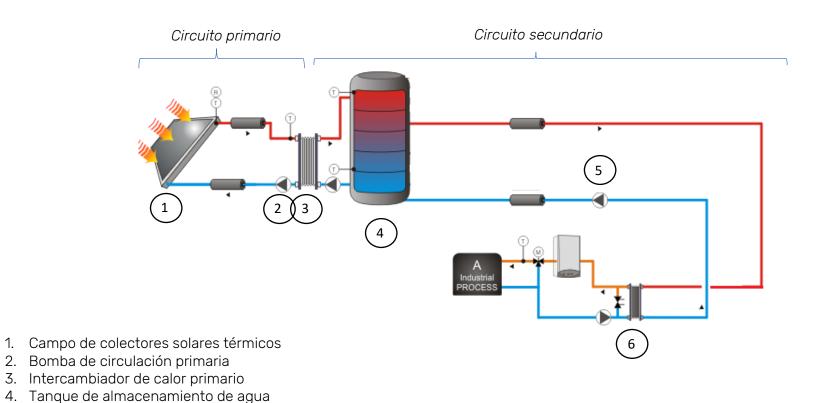

Eficiencia de la energía solar

≃ 80 %

(PV: 18% a 20%)

Vida útil

> 30 años



¿Cómo funciona una central solar térmica?

6. Intercambiador de calor conectado al proceso

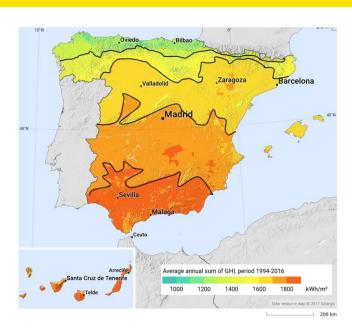
No se sustituye a ningún proceso existente.

5. Bomba de circulación para suministrar

energía a los procesos

Factores de éxito y aplicaciones

Demanda térmica (temperatura y volumen)


Costo de la energía

Disponibilidad de terreno e implantación Idealmente en el suelo.

Radiación solar

Aplicaciones en procesos industriales

- Precalentamiento del agua de reposición o retornos de condensado de caldera
- Producción de agua caliente (ej. agua para lavado)
- Precalentamiento por inyección directa de vapor (ej. cocción)
- Secado (ej. cereales, ladrillos)

- Calentamiento o precalentamiento directo de productos y agua de proceso (ej. termización, disolución, pasteurización, esterilización, blanqueo)
- Mantenimiento de la temperatura (ej. tratamiento de superficie)

A. Proyecto en desarrollo (Francia)

Industria quesera

PROYECTO Tecnología

Integración al

Rango de temperatura

CENTRAL SOLAR

Potencia instalada

Suministro anual

Fracción solar total

Tamaño de la central

Tanque de almacenamiento

GANANCIAS E IMPACTO Ahorro en la factura energética

Consumo de gas evitado

Emisiones de CO₂ evitadas

captores planos

tanque de 60°C con agua caliente para aplicaciones de estandarización/

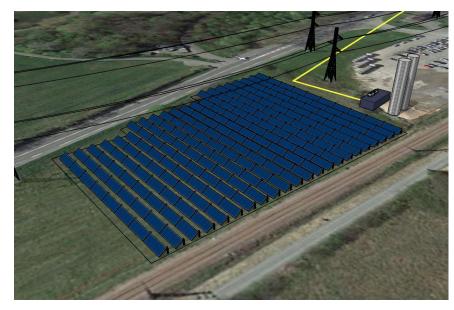
maduración y lavado

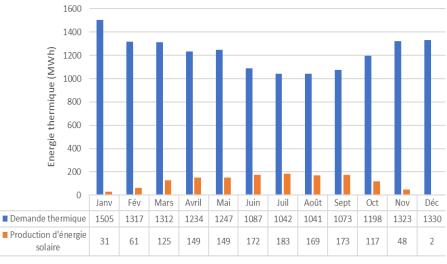
50 a 60°C

1,8 MW_{th}

1.380 MWh/año

9,4 %


2.500 m²


 $200 \, \text{m}^3$

≃ 13,8% por MWh

2,1 GWh PCS/año

512 toneladas/año

B. Proyecto en estudio (Catalunya, España)

Planta de producción

PROYECTO Tecnología	captores de concentración
---------------------	---------------------------

Instalación en el suelo

Integración al proceso de producción de vapor

CENTRAL Suministro anual 8.485 MWh/an

SOLAR Fracción solar 8,1%

Terreno que ocupa la central 8.620 m²

GANANCIAS Ahorro en la factura energética 45,200 € (año 1);

E IMPACTO 5.292.000 € (año 25)

Consumo de gas evitado 11.1 GWh PCS/año

Emisiones de CO₂ evitadas 2.442 toneladas/año

(equivalente a quitar de circulación

a 1.465 automóviles)

C. Preestudio (España)

Planta de producción de malta en Andalucía

PROYECTO Tecnología captores planos

> Instalación en el suelo

Integración al proceso de secado de malta

T° amb - 65°C Rango de temperatura

Potencia 7 MW_t CENTRAL **SOLAR**

Suministro anual 10.355 MWh/año

Fracción solar total 12 %

Tamaño de la central 9.336 m²

450 m³ Tanque de almacenamiento

Etapas de un proyecto solar térmico

ESTUDIO DE FACTIBILIDAD

DISEÑO

DESARROLLO

CONSTRUCCIÓN

OPERACIÓN Y MANTENIMIENTO

- Se recopilan los datos sobre la demanda energética
- Se dimensiona la instalación
- Se determina el punto de integración al proceso industrial
- Se presenta una oferta indicativa

- Se detalla la ingeniería de la planta de energía solar
- Se realizan estudios complementarios
- Se presenta una oferta consolidada

- Se realiza la inversión
- Se establecen las condiciones contractuales con el cliente
- Se realizan los trámites de obtención de autorizaciones administrativas
- Se instalan los colectores, el almacenamiento, las tuberías, etc.
- Se realiza la conexión con el punto de integración
- Se inicia la fase de prueba y puesta en marcha de la planta

- Se opera la central (suministro de calor)
- Se realizan el mantenimiento necesario para la optimización continua de la central

Estudio de factibilidad

Datos a tener en cuenta al evaluar el potencial de una planta industrial para un proyecto de energía solar térmica:

Temperaturas en la que opera el proceso (entrada y salida)

Plano de la planta industrial indicando:

- terreno disponible para la instalación
- ubicación de los procesos de demanda térmica

Flujos de aire/agua/producto a calentar

Facilidad de integración

Rango de operación para cada parte del proceso (cada día, mes, año)

Factura de gas o combustible (precio)

Eficiencia de la caldera y de la distribución

Auditoría energética y conclusiones (si estuviera disponible)

Composición de un panel solar térmico

CAPTOR PLANO

Potencia 10 kW_{th}

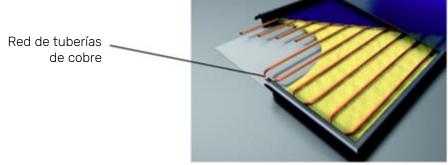
Tamaño 12,6 m²

Peso 250 kg

Volumen de líquido 10,6 L

Productividad anual 450-750 kWh/m²/año

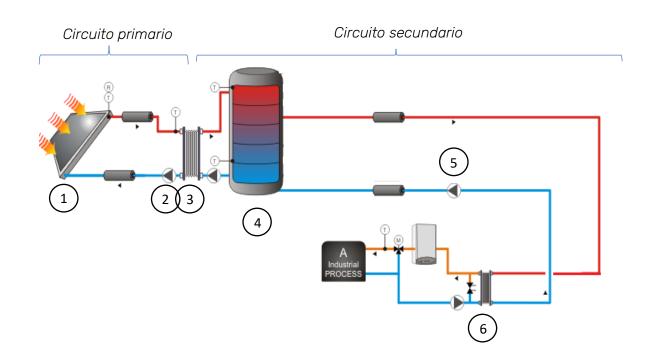
(según irradiación solar y


temperatura de aplicación)

Potencia de 1.000 m²

de captores

 $800 \, \mathrm{kW_{th}}$



¿Cómo funciona una central solar térmica?

- El sol calienta el agua glicolada que circula dentro de los paneles solares térmicos (circuito primario).
- El calor recuperado es transferido al circuito secundario por medio del intercambiador primario.
- En el tanque de almacenamiento se conserva el agua calentada.
- El calor es enviado al proceso a través de un segundo intercambiador de calor.

- 1. Campo de colectores solares térmicos
- 2. Bomba de circulación primaria
- 3. Intercambiador de calor primario
- 4. Tanque de almacenamiento de agua
- 5. Bomba de circulación para suministrar energía a los procesos
- 6. Intercambiador de calor conectado al proceso

No se sustituye a ningún proceso existente.