

Declaración Ambiental de Productos de paneles solares térmicos de Fabrisolia

INDICE

- ✓ Qué es una Declaración Ambiental de Producto.
- ✓ DAP de los paneles solares térmicos de Fabrisolia para aplicaciones residenciales y del sector terciario.
- ✓ Huella de Carbono de Energía Solar Térmica. Evaluación y comparación frente a la Energía Fotovoltaica

¿Qué es?

FOTOGRAFÍA DE LOS INDICADORES AMBIENTALES DE UN PRODUCTO O SERVICIO

DAR RESPUESTA E INFORMAR/COMPARAR COMPORTAMIENTOS AMBIENTALES

¿Qué es?

Inventario de "indicadores medioambientales" cuantificados, de un producto o servicio (ISO 14040)

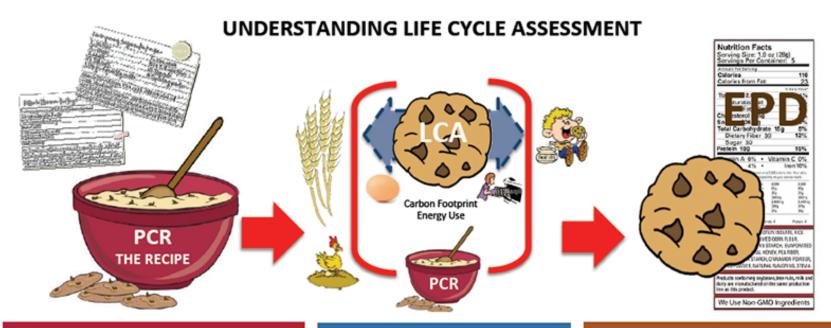
Asociación Española de Normalización y Certificación

Sistema de Etiquetado Ecológico Tipo III (ISO 14025)

The International Reference Life Cycle Data System (ILCD) Handbook

¿Cómo?

Criterios: Product Category Rules (PCRs)


PCR LCA DAP

Metodología: Análisis Ciclo de Vida (ACV)

¿Cómo?

PCR Product Category Rule (The Recipe)

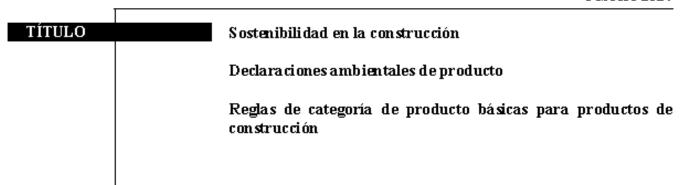
PCRs create industry standardized methodologies (governed by ISO) SAMPLE PCRs: Thermal Insulation, task chairs, wood PCR's set standards for what to count and how. Allowing for industry standardization and apples to apples product comparisons.

LCA Life Cycle Assessment

(What is Counted and Included)

The limits of an LCA defines what is counted and included in a product's life cycle assessment, as defined by the products PCR EPD Environmental Product Declaration (Ingredients and Product Facts)

The ISO 14000 series sets environmental standard for EPDs



norma española

UNE-EN 15804:2012+A1

Febrero 2014

En la DAP se han estudiado tres tipos de paneles solares térmicos (Slim 200, Sol 250 y D230) para su uso en aplicaciones residenciales (viviendas unifamiliares) y del sector terciario (instalaciones comerciales e industriales).

Declaración Ambiental de Producto

EN ISO 14025:2010 UNE-EN 15804:2012+A1:2014

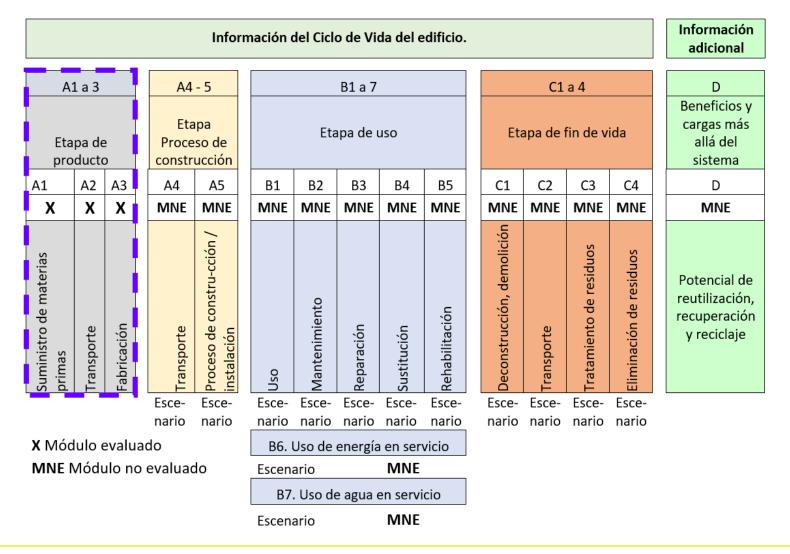
AENOR

PANELES SOLARES TÉRMICOS Slim 200, Sol 250 y D230.

Fecha de primera emisión: 30-10-2019 Fecha de excisación: 20-10-2024

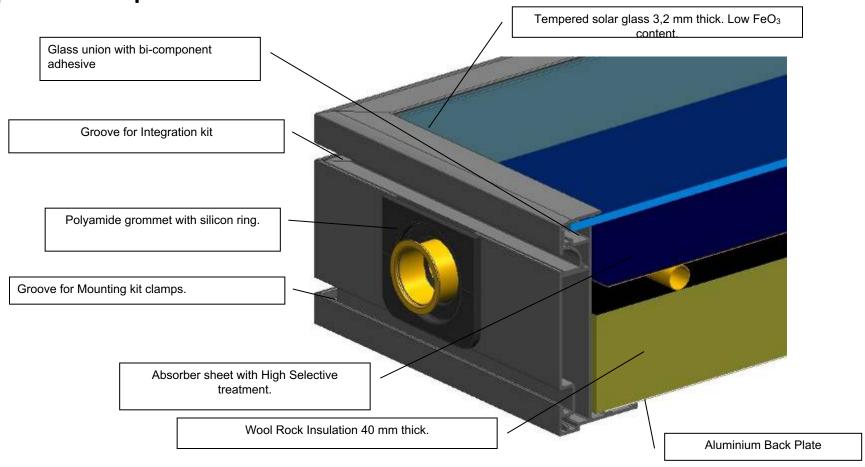
Código de registro (NabaSIRD: EN15804-008.

Fabrisolia S.L.U.


BDR THERMEA GROUP

Etapas y módulos de información para la evaluación de edificios (norma 15804):

ENTI	RADAS		SALIDAS
 Aluminio. Acero. Cobre. Poliamida. Lana de roca. Lana de vidrio Caucho. Silicona. Cristal templado. Agua de red. Plástico de embalaje. 	 Cartón de embalaje. Etiquetas de papel. Etiquetas aluminizadas. Espuma polietileno. Etilvinilacetato. Madera. Gas natural. Energía eléctrica. 	A1. Producción de materias primas A2. Transporte a fábrica A3. Proceso productivo de los paneles	 Panel solar térmico Emisiones al aire. Depuración de aguas residuales en depuradora municipal. Transporte de los residuos a gestión. Gestión de los residuos generados.


En el ACV no se han incluido:

- ✓ Las infraestructuras, ni los bienes de capital.
- ✓ Los viajes de trabajo del personal; ni los viajes al trabajo o desde el trabajo, del personal.
- ✓ Las actividades de investigación y desarrollo.

Composición del panel

14

La <u>unidad funcional</u> elegida ha sido la producción de un metro cuadrado de panel solar térmico terminado.

Se han estudiado las etapas del ciclo de vida de la "cuna a la puerta", que contempla las siguientes fases:

- ✓ A1: producción de las materias primas del panel solar térmico que forman parte del producto final.
- ✓ A2: transporte de materias primas del panel solar térmico a las instalaciones de Castellbisbal.
- ✓ A3: producción del panel solar térmico en la fábrica: producción de los paneles incluyendo los consumos energéticos y de agua; producción de materias auxiliares; producción de embalajes; y transporte y gestión de residuos generados.

Los procesos posteriores, el montaje y/o la instalación de los paneles quedan fuera del alcance estudiado.

Para la modelización del proceso de fabricación se han empleado datos de producción de la fábrica de un año completo de:

- ✓ Consumos de materia y energía.
- Emisiones al aire.
- ✓ Vertidos.
- ✓ Generación de residuos.

Cuando ha sido necesario se ha recurrido a la base de datos Ecoinvent, aplicando los siguientes criterios:

- ✓ Que sean representativos de la tecnología aplicada en los procesos de fabricación.
- Que sean datos europeos medios.
- Que sean datos lo más actuales posibles.

Se ha empleado el software SimaPro para la modelización del ACV y el cálculo de las categorías de impacto ambiental.

Products		
Panel solar A1	2 m ²	Panel solar térmico de 2 m ²
Avoided products		
Resources		
Materials/fuels		
Aluminium alloy, AlMg3 {RER} production Cut-	ka	Aluminio bruto
off, U	kg	Aldiffillio bruto
Steel, chromium steel 18/8 {RER} steel		
production, converter, chromium steel 18/8 Cut-	kg	Piezas de acero
off, U		
Steel electrogalvanized steel/EU	kg	Acero galvanizado
Copper {RER} production, primary Cut-off, U	kg	Tubo de cobre
Silicone product {RER} production Cut-off, U	kg	Silicona juntas
Glass wool mat {CH} production Cut-off, U	kg	Fibra de vidrio
Stone wool, packed {CH} stone wool production,	kg	Lana de roca
packed Cut-off, U	ky	Lana de roca
Glass fibre reinforced plastic, polyamide, injection		Plástico reforzado con fibra de
moulded {RER} production Cut-off, U	kg	vidrio
Flat glass, uncoated {RER} production Cut-off, U	kg	Cristal

Products		
Panel solar A2	2 m ²	Panel solar térmico de 2 m ²
Avoided products		
Resources		
Materials/fuels		
Transport, freight, lorry 16-32 metric ton, EURO5 {RER} transport, freight, lorry 16-32 metric ton, EURO5 Cut-off, U	kgk m	Transporte de materias primas
Transport, freight, lorry 16-32 metric ton, EURO5 {RER} transport, freight, lorry 16-32 metric ton, EURO5 Cut-off, U	kgk m	Transporte de embalajes

Products		
Panel solar A3	2 m ²	Panel solar térmico de 2 m²
Avoided products		
Resources		
Materials/fuels		
Linerboard {RER} containerboard production, linerboard, kraftliner Cut-off, U	kg	Cartón
Sawnwood, softwood, dried (u=20%), planed {RER} production Cut-off, U	m ³	Madera de palet
Packaging film, low density polyethylene {RER} production Cut-off, U	kg	Film embalaje
Natural gas, high pressure {ES} market for Cut-off, U	m ³	Consumo gas natural
Tap water {Europe without Switzerland} tap water production, conventional treatment Cut-off, U	ton	Consumo agua
Transport, freight, lorry 16-32 metric ton, EURO5 {RER} transport, freight, lorry 16-32 metric ton, EURO5 Cut-off, U	tkm	Transporte residuos
Electricity/heat		
Electricity, medium voltage {ES} electricity voltage transformation from high to medium voltage Cut-off, U 2018	kWh	Consumo electricidad
Heat, district or industrial, natural gas {Europe without Switzerland} heat production, natural gas, at industrial furnace low-NOx >100kW Cut-off, U	MJ	Producción de energía
Waste to treatment		
Hazardous waste, for incineration {Europe without Switzerland} treatment of hazardous waste, hazardous waste incineration Cut-off, U	ton	Gestión residuo peligroso
Waste textile, soiled {CH} treatment of, municipal incineration with fly ash extraction Cut-off, U	ton	Gestión residuo textil
Municipal solid waste {CH} treatment of, sanitary landfill Cut-off, U	ton	Gestión RSU

Componiendo las fases A1, A2 y A3 de la producción del panel se obtiene el proceso completo de producir 1 m² del mismo.

Productos	Cantida d	Unidad
Panel solar	1	m ²
Avoided products		
Resources		
Materials/fuels		
Slim200 A1	1	m^2
Slim200 A2	1	m^2
Slim200 A3	1	m^2

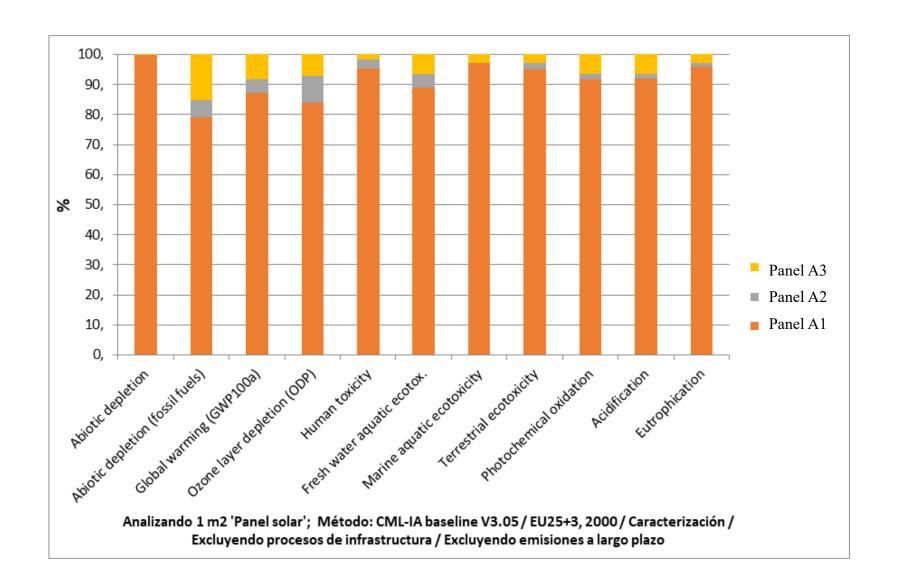
La elección de las metodologías de evaluación de impacto y de las categorías de impacto ambiental a evaluar ha seguido los criterios pedidos por la Regla de Categoría de Producto (RCP).

Los impactos ambientales potenciales asociados con los distintos tipos de uso de los recursos y de emisiones contaminantes se evalúan con la metodología CML-IA y se informan agrupándolos en categorías de impacto ambiental.

Como información complementaria opcional, se incluido el resultado de la aplicación de la metodología ILCD 2011 Midpoint+, propuesta por la Unión Europea para la Huella Ambiental, facilitando los valores obtenidos para las 16 categorías de impacto ambiental que define.

Metodología CML:

Categoría de impacto	Parámetro	Unidad expresada por ud. declarada
Agotamiento de recursos	Potencial de agotamiento de recursos abióticos	Kg Sb eq
abióticos-elementos	para recursos no fósiles (ADP-elementos).	
Agotamiento de recursos	Potencial de agotamiento de recursos abióticos	MJ, valor calorífico
abióticos-combustibles fósiles	para recursos fósiles (ADP- combustibles fósiles).	neto
Acidificación del suelo y del	Potencial de acidificación del suelo y de los	Kg SO2 eq
agua	recursos de agua, AP	
Agotamiento de la capa de	Potencial de agotamiento de la capa de ozono	Kg CFC-11 eq
ozono.	estratosférico, ODP.	
Calentamiento global	Potencial de calentamiento global, GWP	Kg CO2 eq
Eutrofización.	Potencial de eutrofización, EP.	Kg (PO ₄) ³⁻ eq
Formación de ozono	Potencial de formación de ozono troposférico,	Kg etileno eq
fotoquímico.	POCP.	



Categoría de	Parámetro Ud.		Panel solar térmico Unidad funcional: 1 m² de panel			
impacto			A1 a A3	A 1	A2	A3
Agotamiento de recursos abióticos – elementos.	Potencial de agotamiento de recursos abióticos para recursos no fósiles.	kg Sb eq	2,54E-03	2,54E-03	3,92E-09	4,23E-07
Agotamiento de recursos abióticos – combustibles fósiles	Potencial de agotamiento de recursos abióticos para recursos fósiles.	MJ	487,90	383,53	28,55	75,82
Acidificación del suelo y el agua	Potencial de acidificación del suelo y de los ecursos de agua.	kg SO₂eq	2,95E-01	2,70E-01	5,28E-03	1,93E-02
Agotamiento de la capa de ozono	Potencial de agotamiento de la capa de ozono estratosférico.	kg CFC- 11eq	4,03E-06	3,36E-06	3,70E-07	2,97E-07
Calentamiento global.	Potencial de calentamiento global.	kg CO₂eq	42,16	36,49	1,98	3,69
Eutrofización	Potencial de eutrofización.	kg PO₄-eq	6,98E-02	6,68E-02	9,03E-04	2,11E-03
Formación de ozono fotoquímico	Potencial de formación de ozono troposférico.	kg C2H₄eq	1,42E-02	1,29E-02	2,51E-04	9,83E-04

A partir de los datos del inventario del análisis con la metodología CML-IA se obtiene el uso de recursos de la producción del panel.

Panel solar térmico Unidad funcional: 1 m² de panel			Etapa del Ciclo de Vida Etapa de producto			
Parámetro Ud.			A2	A3	A1 a A3	
Uso de energía primaria renovable excluyendo los recursos de energía primaria renovable utilizada como materia prima	MJ	74,16	8,40E- 02	48,61	122,85	
Uso de energía primaria renovable utilizada como materia prima	MJ	0,00	0,00	0,00	0,00	
Uso total de la energía primaria renovable (energía primaria y recursos de energía primaria renovable utilizada como materia prima)	MJ	74,16	8,40E- 02	48,61	122,85	
Uso de energía primaria no renovable, excluyendo los recursos de energía primaria no renovable utilizada como materia prima	MJ	0,00	0,00	0,00	0,00	
Uso de la energía primaria no renovable utilizada como materia prima	MJ	682,20	32,71	82,94	797,85	
Uso total de la energía primaria no renovable (energía primaria y recursos de energía primaria renovable utilizada como materia prima)	MJ	682,20	32,71	82,94	797,85	
Uso de combustibles secundarios renovables	MJ	0,00	0,00	0,00	0,00	
Uso de combustibles secundarios no renovables	MJ	0,00	0,00	0,00	0,00	
Uso de materiales secundarios	kg	0,00	0,00	0,00	0,00	
Uso neto de recursos de agua dulce	m ³	0,347	1,82E- 03	2,99E- 02	0,378	

A partir de los datos del inventario del análisis con la metodología EDIP se obtienen los residuos y los flujos de salida de la producción del panel.

Panel solar térmico	Etapa del Ciclo de Vida				
Unidad funcional: 1 m² de p	Etapa de producto				
Parámetro	Unidad	A1	A2	А3	A1 a A3
Residuos peligrosos eliminados	kg	1,95E-02	5,20E-06	4,96E-05	1,95E-02
Residuos no peligrosos	4.725.02	5 405 06	2.075.06	1 725 02	
eliminados	kg	1,72E-02	5,10E-06	2,87E-06	1,72E-02
Residuos radioactivos	1	1 445 02	2.005.04	2 205 04	1 005 03
eliminados	kg	1,44E-03	2,08E-04	2,39E-04	1,89E-03

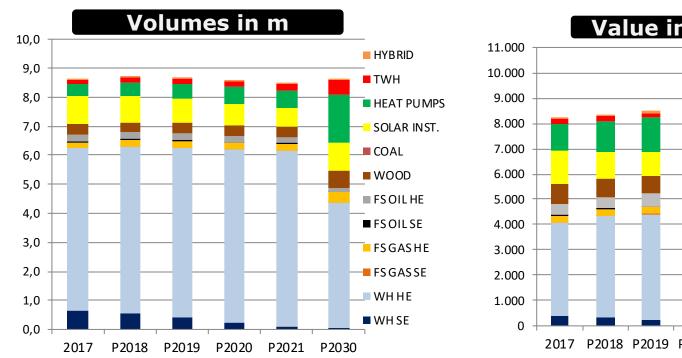
Los materiales generados durante el proceso productivo que se consideran residuos son los enviados a vertedero para su disposición final (materiales no reutilizados, reciclados y/o valorizados).

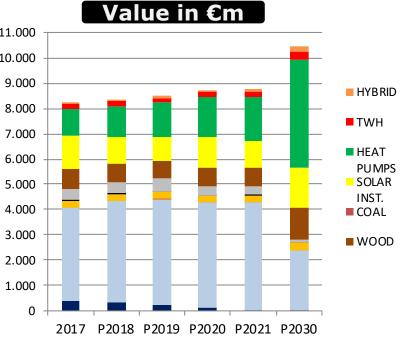
Metodología ILCD, propuesta por la Unión Europea para la Huella Ambiental:

Categoría de impacto	Unidad
Climate change	kg CO2 eq
Ozone depletion	kg CFC-11 eq
Human toxicity, non-cancer effects	CTUh
Human toxicity, cancer effects	CTUh
Particulate matter	kg PM2.5 eq
Ionizing radiation HH	kBq U235 eq
Ionizing radiation E (interim)	CTUe
Photochemical ozone formation	kg NMVOC eq
Acidification	molc H+ eq
Terrestrial eutrophication	molc N eq
Freshwater eutrophication	kg P eq
Marine eutrophication	kg N eq
Freshwater ecotoxicity	CTUe
Land use	kg C deficit
Water resource depletion	m3 water eq
Mineral, fossil & ren resource depletion	kg Sb eq

Panel solar térmico						
Categoría de impacto	Unidad funcional: 1 m ² de panel					
	Total	A1	A2	А3		
Climate change	4,33E-03	3,92E-03	2,15E-04	1,93E-04		
Ozone depletion	1,87E-04	1,56E-04	1,71E-05	1,38E-05		
Human toxicity, non-cancer effects	2,58E-02	2,47E-02	5,17E-04	6,33E-04		
Human toxicity, cancer effects	3,75E-02	3,67E-02	3,36E-05	7,89E-04		
Particulate matter	1,23E-02	1,16E-02	1,91E-04	5,22E-04		
Ionizing radiation HH	1,73E-03	1,33E-03	1,13E-04	2,86E-04		
Ionizing radiation E (interim)	0,00	0,00	0,00	0,00		
Photochemical ozone formation	5,16E-03	4,53E-03	2,00E-04	4,34E-04		
Acidification	7,62E-03	6,94E-03	1,45E-04	5,25E-04		
Terrestrial eutrophication	3,89E-03	3,41E-03	1,36E-04	3,36E-04		
Freshwater eutrophication	7,04E-03	6,97E-03	1,60E-06	6,61E-05		
Marine eutrophication	5,25E-03	4,91E-03	1,28E-04	2,12E-04		
Freshwater ecotoxicity	5,22E-03	4,37E-03	6,35E-04	2,13E-04		
Land use	3,40E-04	1,40E-04	1,83E-07	2,00E-04		
Water resource depletion	-9,90E-02	-9,92E-02	6,55E-06	1,96E-04		
Mineral, fossil & ren resource depletion	3,58E-01	3,58E-01	3,42E-06	1,55E-04		

Huella de Carbono de Energía Solar Térmica


Evaluación y comparación frente a la Energía Fotovoltaica



Antecedentes

- El consumo de energía primaria desempeñará un papel importante en NZEB, pero en un futuro próximo, la Huella de Carbono será un diferenciador clave para productos y tecnologías.
- ✓ El estudio de McKinsey muestra un aumento de la tecnología SolarThermal del período 2021 a 2030, debido a su menor huella de carbono.

30

El análisis

- ✓ Se ha calculado la HC para los productos de Fabrisolia, teniendo en cuenta desde la cuna hasta el final de la producción.
- ✓ Se ha tenido en cuenta la extracción de materias primas, la minería, el procesamiento, el transporte a la fábrica y el proceso de fabricación.
- ✓ También se han considerado los consumos de energía (electricidad, gas), y los residuos generados.
- ✓ Se han calculado los 3 colectores vendidos con mayor frecuencia y se han ponderado los cálculos finales y las comparaciones (colectores Slim 2.0, Sol 250, D230).
- ✓ Para los cálculos y las comparaciones con PV, se han considerado 30 años de vida útil para ambas tecnologías.
- ✓ En los cálculos de tecnología fotovoltaica se han teniendo en cuenta 23 estudios previos de análisis de ciclo de vida, de los cuales se han extraído los valores característicos de tecnologías Mono, Multi y Poli cristalinas. Fuente: *Daniel Nugent* and *Benjamin K. Sovacool*, (2014), <u>Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey</u>, *Energy Policy*, 65, (C), 229-244

El tratamiento de datos de Energía fotovoltaica

Table 8				
Total lifecycle	GHG emissions and	factors	for 23 qualified	solar PV studies.

Source	Location	Life (years)	Irradiance (kWh/m²)	Tech	Mounting	Assumptions	Estimate (g CO ₂ -eq/kWh
Alsema and de Wild-	Southern Europe	_	-	Ribbon-Si	-		28
Scholten (2004)	Netherlands/Germany	_	_	Ribbon-Si	_		48
	Southern Europe	_	_	Multi-Si	Roof mount		73
	Netherlands/Germany	_	_	Multi-Si	Roof mount		124
Alsema et al. (2006)	Production US, Installation Southern Europe	30 (15 inverter)	1700	CdTe	Ground mount	9% efficiency	25
	Southern Europe	30 (15 inverter)	1700	Ribbon-Si	Roof mount	11,5% efficiency	29,5
				Mono-Si	Roof mount	14% efficiency	35
				Multi-Si	Roof mount	13.2% efficiency	32
Beylot et al. (2014)	-	30	1700	Multi-Si	30° tilt, fixed aluminum	5 MWp, 14% module efficiency	53.5
Deybere de (2014)			1700	With the	mount	5 mmp, 100 module emaciney	33.3
					30° tilt, fixed wood mount	5 MWp, 14% module efficiency	38
					30° tilt, single axis tracking	5 MWp, 14% module efficiency	37.5
					30° tilt, dual axis tracking	5 MWp, 14% module efficiency	42.8
Barri et el (2011)	E	20	1700	Minney	22° roof mount		20.9
Bravi et al. (2011)	Europe			Micromorph		125 Wp module, 8.74% efficiency, 513 g CO2/kWh European electricity mix	
Desideri et al. (2013)	Sicily, Italy	30	1600-1800	Mono-Si	30° tilt, ground mounted	13,85% module efficiency, 2 MWp	47.9
					single-axis tracking		
de Wild-Scholten et al.	Southern Europe	30 (15	1700	Multi-Si	on-mof Phonix mounting	11.4 kWp, 13.2% module efficiency	38
(2006)		inverter)			structure		
					on-roof Schletter roof hooks in-roof Schletter mounting	11.4 kWp, 13.2% module efficiency 11.4 kWp, 13.2% module efficiency	35,5 32
					structure in-roof Schweizer mounting structure	11.4 kWp, 13.2% module efficiency	32,5
					ground Phonix mount	11.4 kWp, 13.2% module efficiency	41
					ground Springerville mount	11.4 kWp, 13.2% module efficiency	37
Espinosa et al. (2011 a)	Manufacturing Denmark,	15	1700	Transparent organic polymer,	-	2% module efficiency, 2008 Denmark energy mix	37.77
	Installation Southern Europe			indium-tin-oxide (ITO)		(420.88 g CO ₂ -eq/kwh)	
				,		3% module efficiency, 2008 Denmark energy mix (420.88 g CO ₂ -eg/kwh)	56,65
Fthenakis and Alsema	Europe	30	1700	Multi-si	On-roof mount	european electricity mix 13.2% efficiency	37
(2006)				CdTe	On-roof mount	european electricity mix, 8% efficiency	21
()				Ribbon-Si	On-roof mount	,	30
				mono-Si	on-roof mount		45
	Production US, Installation Europe	30	1700	CdTe	ground mount	US electricity mix, 9% efficiency	25
Fthenakis and Kim. (2006)	United States	30	1800	CdTe	Ground mount	25 MWp, 9% efficiency	24
(2006) Fthenakis et al. (2009b)	Ohio, USA	-	1700	CdTe	-	10.9% efficiency, US electricity mix	12.75
Garcia-Valverde et al. (2010)	Southern Europe	15	1700	Organic/plastic	-	(750 g CO ₂ -eq/kWh) 5% module efficiency	109,84
Glockner et al. (2008)	Europe	30	1700	Multi-Si	On-roof mount Schletter	Siemens Si processing, 13,2% module efficiency	30
.,,	-				mounting		
				:		Elkem Solar Si processing, 13.2% module efficiency	
Hondo (2005)	Japan	30	-	Poly-Si	On-roof mount	3 kWp, 0.15 capacity factor, 10% efficiency	53,4
Hsu et al. (2012)	Global	30	1700	c-Si	-		45
				mono-Si	-	14% module efficiency	40
				Multi-Si	-	13,2% module efficiency	47
				c-Si	Ground mount		48
				c-Si	Roof mount		44
Jungbluth (2005)	Switzerland	30	1100	Poly-Si	On-roof mount	3 kWp, 79 g CO ₂ -eq/kWh electricity mix	39-110

Promedio selección: 41,7 grCO2/kWh

*Promedio total estudio: 49,91 grCO2/kWh

El tratamiento de datos de Energía fotovoltaica

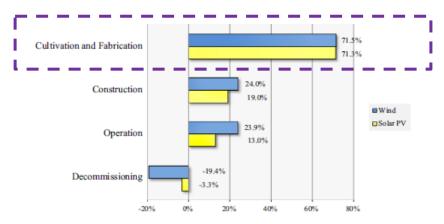


Fig. 1. Breakdown of lifecycle greenhouse gas emissions for wind energy and solar PV (% of total).

Información del Ciclo de Vida del edificio.											Información adicional					
A:	1 a 3			A4-5 B1a7 C1a4				B1 a 7						D		
	pa de		Pro	tapa ceso struc		Etapa de uso				Etapa de fin de vida			Beneficios y cargas más allá del sistema			
A1	A2	А3	A4		A5	B1	B2	В3	B4	B5		C1	C2	С3	C4	D
Х	Х	Х	MN	E N	MNE	MNE	MNE	MNE	MNE	MNE	1	MNE	MNE	MNE	MNE	MNE
Suministro de materias primas	Transporte	Fabricación		i alisporte	Proceso de constru-cción / instalación	Uso	Mantenimiento	Reparación	Sustitución	Rehabilitación		Deconstrucción, demolición	Transporte	Tratamiento de residuos	Eliminación de residuos	Potencial de reutilización, recuperación y reciclaje

Parte A1 a A3 del promedio: 29,8 grCO2/kWh

30 años vida útil 557 kWh/año x módulo* Huella de Carbono equivalente modulo fotovoltaico: 497,96 kgCO2 por módulo

^{*} Fuente: PVGIS v.5 calculado en Madrid con un módulo de 300Wp con un 0% de pérdidas del sistema

Resultados

Huella de carbono media relacionada con el producto (total, por colector)

SOLAR TÉRMICA								
	kg _e CO ₂ producción	% normalizado						
D230	131,68	12%						
Slim 200	86,58	51%						
SOL 250	142,13	37%						
Ponderado	112,55	kg _e CO ₂						

✓ Huella de carbono media relacionada con el producto (total, por módulo). Fuente Elsevier: "Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey"

FOTOVOLTAICA						
Total	497,96 kg _e CO ₂					

✓ Conclusión: para producirse, un módulo fotovoltaico estándar es responsable de 4,4 veces más emisiones de CO₂ que la energía solar térmica

Emisiones de CO₂ per kWh generado

Al comparar las emisiones por kWh generado, debemos tener en cuenta las condiciones climáticas para la evaluación. En este caso, Madrid se ha tomado como base para ambas tecnologías.

SOLAR	TÉRMICA		FOTOVOLTAICA				
Vida útil	30 años	(Scenocalc)	Vida útil	30 (PVGIS 0% losses)			
Producción energía	kwh/año						
D230	1.948	(12%)					
Slim 200	1.532	(51%)					
SOL 250	2.149	(37%)					
Ponderado Huella Carbono		Wh/año O2/kWh	Producción energía Huella Carbono	557 kWh/año 29,8 grCO2/kWh			
f	14,	4					

En este caso, por kWh generado, la energía solar térmica solo emite 2,1 gramos de CO₂, mientras que las emisiones fotovoltaicas son 14 veces más altas

Retorno de CO₂

- ✓ Finalmente, se ha calculado un retorno de CO₂ para ambas tecnologías (tiempo requerido para compensar las emisiones incurridas para producir el colector / módulo, dada la energía producida con la tecnología)
- ✓ Se han realizado 2 escenarios: gas o electricidad, dependiendo de qué tecnología se hubiera utilizado en lugar de la solar
- ✓ Para el cálculo, cada kWh de gas quemado es igual a 180 grCO2, y cada kWh de electricidad de la red es igual a 308 grCO2 (referencia española)

Retorno de CO₂

EQUIVALENCIA GAS NATURAL									
SOLAR ⁻	ΓÉRMICA	FOTOVOLTAICA							
Producción Energía	1810kwh/year	Producción Energía	557kwh/year						
Huella Carbono		Huella Carbono							
producción	112,55 kg CO2	producción	497,96kg CO2						
Emisiones evitadas	325,8kg CO2/year	Emisiones evitadas	100,2kg CO2/year						
Retorno CO2	0,35años *	Retorno CO2	4,97años*						

EQUIVALENCIA ENERGÍA ELÉCTRICA									
SOLAR 1	ΓÉRMICA	FOTOVOLTAICA							
Producción Energía	1810kwh/year	Producción Energía	557 kwh/year						
Huella Carbono		Huella Carbono							
producción	112,55kg CO2	producción	497,96kg CO2						
misiones evitadas 557,5kg CO2/yea		Emisiones evitadas	171,5kg CO2/year						
(promedio 30	8 grCO2/kWh)	(promedio 308 grCO2/kWh)							
Retorno CO2	0,20años *	Retorno CO2	2,90años*						

^{*} Tiempo necesario para compensar las emisiones causadas al producir un panel o módulo

Abaleo está registrado como consultor en Análisis de Ciclo de Vida y Declaración Ambiental de Producto a nivel de la UE:

- ➤ UE List of contributors de la European Platform on LCA, (somos los sextos de la lista) http://eplca.jrc.ec.europa.eu/ResourceDirectory/faces/providers/providerList.xhtml
- ➤ ENVIRONDEC LIST OF LCA CONSULTANTS, (somos los primeros de la lista)

 http://www.environdec.com/en/Creating-EPDs/List-of-LCA-consultants/

Abaleo es miembro de la Life Cycle Initative.

Los técnicos de Abaleo son profesores de Máster y postgrados del Instituto Superior del Medioambiente, la Universidad Nebrija, la EOI, la Universidad de Alcalá de Henares (Madrid), la Universidad Politécnica de Madrid, la Universidad Complutense de Madrid, la Universidad Autónoma Metropolitana de México DF, la Universidad Técnica Equinoccial de Quito, etc.

Algunos servicios de Abaleo S.L.:

- Análisis de Ciclo de Vida.
- Economía Circular.
- ✓ Declaración Ambiental de Producto.
- Huella Ambiental de Producto y Organización de la UE.
- ✓ Huella de Carbono.
- Huella Hídrica. Huella de Agua.
- Ecodiseño.
- ✓ Eco-etiquetado.
- Riesgos Ambientales y Responsabilidad medioambiental.
- ✓ Impacto ambiental.
- Proyectos de Investigación.
- ✓ Formación. Jornadas de divulgación.
- Comunicación ambiental.

www.abaleo.es

http://www.ismedioambiente.com/

Para solicitar más información:

José Luis Canga Cabañes

jlcanga@abaleo.es. Tfno.: 639 901 043

Virginia Martín Pérez

vmartin@abaleo.es. Tfno.: 644 139 067

Para solicitar más información:

José Luis Canga Cabañes

jlcanga@abaleo.es

Tno: 639 901 043

Virginia Martín Pérez

vmartin@abaleo.es

Tfno: 644 139 067

